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ABSTRACT 

A proper understanding of the mechanism of contact between two or more 

nominally flat surfaces is crucial in the design process of many devices.  This thesis, 

using analytical and computational methods, models the former through the use of fractal 

characteristics at the contact interface.  A parametric analysis of the fractal surface was 

completed in order to properly understand fractal geometry and its effect on surface 

properties.  The fractal surface was simplified so that Hertz theory could be used to 

model surface deformation and resulting contact stresses.  The data gathered from the 

model was then input into an existing electromagnetic rail gun program to study the 

contact surface effect on exit velocity, temperature, electrical conductivity, and contact 

area ratio.  Finally, a study of the fractal parameter effects on the electromagnetic rail gun 

was completed. 
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I. INTRODUCTION  

A. MOTIVATION 

In order to properly develop the technology used in the electromagnetic rail gun, 

one must take into consideration the importance of the contact mechanics involved.  

Mechanical, thermal, and electrical contact must all be understood at the interface 

between rail and armature.  Figure 1 below displays a generic view of current rail gun 

construction. 

 
Figure 1.   Rail Gun Structure [1]. 

The contact surface between the armature and the rails is an area that has been a 

problem for the development of the rail gun due to the simple fact that for proper 

operation, electrical contact must remain consistent throughout a firing.  As the rail gun 

armature moves down the rails, the contact surface changes, and often results in changes 

in electrical contact.  Issues arise when the surface profile changes enough so that an arc 

occurs.  This arc causes a rapid increase in resistive heating well above the metals 

vaporization temperature which results in significant erosion [1]. 

This thesis investigates the mechanics of contact at the microscopic level so that a 

better understanding of the properties of nominally flat surfaces may be improved.  Using 

the commercial computer program MATLAB, the mechanics of contact will be modeled 

and tested with the hopes of future improvements to the electromagnetic rail gun and 

similar defense-related issues. 
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B. BACKGROUND AND LITERATURE SURVEY 

The first well-documented study of contact was that of Heinrich Rudolf Hertz in 

1881.  The well known Hertz problem is one in which the contact stresses are solved for 

the simple cases of a sphere on a plane, a sphere on a sphere, and a cylinder on a 

cylinder; all perfect geometry [2].  Because Hertz theory is applicable for simple cases, 

many scientists in more recent history have developed more robust methods for solving 

contact problems. 

1. Greenwood and Williamson 

The goal of this research was to investigate the contact of nominally flat (but 

microscopically rough) surfaces.  The assumption of nominally flat is defined as those 

surfaces in which the area of apparent contact is large so the individual contacts are 

dispersed and do not influence the neighboring contact locations.  The purpose was to 

describe the theory of elastic contact and how it was closely related to real surfaces than 

the earlier theories.  In order to compare the theoretical results, statistical results were 

tabulated and presented. 

A mathematical model was created to analyze the simple case of Hertz-contact (a 

spherical body in contact with a rigid flat plane) and determine the change in contact area 

with varying load.  The mathematical model was then compared to experimental results 

to compare the change of pressure with different loads.  Contact was then related to 

material hardness to compare the actual deformation with different loads.  The 

development of a Taylor-Hobson model 3 Talysurf allowed the authors to analyze the 

surface topography of common materials.  The research went on to describe the 

mechanics of material wear. 

Due to the fact that this research was completed in 1966, modern methods of 

calculation and computer-aided solvers were unavailable.  The methodology began with 

the previous theory of Hertz contact and developed a surface model to analytically solve 

for deformation and area change with increased forces.  Comparisons were made with 
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 experimental results.  Also, statistical tabulation of the real surface profiles allowed the 

scientists to justify their assumptions of nominally flat surfaces as normal in most 

contact. 

The biggest conclusion of the research was that the separation between two 

surfaces depends on the nominal pressure (load divided by contact area), the number of 

micro-contacts and the total area of contact depend on the load only.  These authors also 

developed the concept of “elastic hardness”, or basically that the area of contact can be 

predicted from the load the same way that it is for plastic contact using the conventional 

data for material hardness.  They also discovered that most common surfaces have a 

Gaussian distribution of asperity heights [3].  The data gathered by these authors was 

cited as a reference for all of the other researchers mentioned in this thesis.   

2. J. F. Archard 

The purpose of this research was to investigate the hypothesis that elastic 

deformation of surface protuberances (asperities) was consistent with Amonton’s law, 

that the friction is proportional to the applied load.  The basic idea investigated was that 

friction between sliding surfaces arises from local adhesion at the regions where 

protuberances come into real or molecular contact. 

Using Amonton’s law as a starting point, the author developed the theory of 

multiple small contacts in friction and backed up his results with experiments.  The focus 

of the research was in the experimentation using a crossed-cylinders friction machine and 

the high polymer Perspex as the test material.  Perspex was used due to its high capability 

to sustain large deformations under elastic conditions.  The experimental results were 

used to develop coefficients of static friction based upon overall compressive load.  

Additional experiments were performed to analyze wear due to friction.  The 

aforementioned experiments were redone using metal specimens and compared to the 

hypothesis that elastic deformation was the primary cause of change and not plastic 

deformation. 

Similar to Greenwood & Williamson, the author had limited computing power, 

and thus his work focused on experiments and tabulated results.  Much of the research 



 4

focused on experimental setup, which required great precision in order to gather 

sufficient accurate results.  The results of the experiments were compared to Amonton’s 

law of friction and results justified. 

The major conclusion from the research was that the real area of contact formed 

between two sliding surfaces was due to elastic deformation of the contacting 

protuberances.  It was shown that the aforementioned assumption was consistent with 

Amonton’s law of friction.  The conclusion was valid for both Perspex (with a large 

elastic range) and for carefully prepared metals under conditions where the damage was 

small [4]. 

3. Yan and Komvopoulos 

The goal of this research was to introduce a comprehensive contact mechanics 

analysis of elastic-plastic rough surfaces that can be characterized by three-dimensional 

fractal geometry and to present numerical results revealing the variation of the interfacial 

contact force and real contact area during quasistatic surface approach. 

The fractal surface equation was developed using the fractal geometry.  Fractal 

geometry is common in nature, and can be observed in turbulence, precipitation, and 

specifically surface topography.  Starting with the Weierstrass-Mandelbrot Equation 

(fractal equation), the engineers approximated the power spectrum, and generalized the 

equation using proper scaling properties.  By including a random phase into the equation, 

they were able to develop a 3-dimensional function of x and y to create a surface with a 

fractal profile.  Using this fractal profile, Hertz contact analysis was performed, with the 

major assumption that the contact areas could be modeled as individual spheres.  Stress-

Strain curves were used to model the elastic-plastic transformation.  The numerical 

results were summarized to reveal the effect of material behavior on the resulting contact 

force.  Graphs of the aforementioned numerical data were included. 

The methodology used in this research was a combination of 3 major areas.  First, 

the overall approach was one that generated surface profiles using fractal mechanics.  

Using the fractal approach gave the authors the ability to randomly change the surface 

profile easily.  The next major area was in the Hertz Contact Theory.  This area, though 
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full of assumptions, was the focus of analyzing the actual contact between the two 

surfaces.  Last, the results were compared statistically to ensure that the results were 

within the realm of actually observed experimental results. 

The research analyzed elastic-plastic rough surfaces characterized by 3-

dimensional fractal geometry.  The theoretical analysis of total contact force and real 

contact area in terms of surface separation distance, fractal parameters, and material 

properties helped to further develop insight into the effects of surface topography on 

contact.  It was found that the actual contact area for elastic-plastic rough silica surfaces 

[the ones analyzed] was a remarkably small fraction of the apparent contact area, thus for 

most of the range of surface separation, the predominant deformation and resulting 

contact was due to elastic effects [5]. 

The research conducted by Yan and Komvopoulos was very much on the cutting 

edge of current contact research.  The fractal approach was actually a major motivating 

factor for the research developed in this thesis. 

4. Sahoo and Ghosh 

The goal of this research was to use the finite element method to model the 

contact between 3-dimensional surfaces with fractal geometry.  The focus was on 

developing non-dimensional contact area and displacement as functions of non-

dimensional load for different surface profiles in the case of elastic contact.  Also 

analyzed was the effect of strain-hardening in the case of elastic-plastic contact. 

Similar to the research of Yan and Komvopoulos, the Weierstrass-Mandelbrot 

function was used to model the surface topography.  A finite element analysis was 

performed using the commercial software program ANSYS, which calculated the contact 

area after application of the load.  A test of the finite element model was used with the 

simple sphere in contact with a rigid flat plane to ensure that the model could accurately 

determine the case of Hertz contact, which had already been completed experimentally.  

Both the analytical and FEM solutions were compared and solutions were generated for 

elastic contact and elastic-plastic contact. 
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The methodology used by Sahoo and Ghosh was a combination of 4 major areas 

of research.  First, the overall approach was one that generated surface profiles using 

fractal mechanics.  Using the fractal approach gave the authors the ability to randomly 

change the surface profile easily.  The next major area was in the Hertz Contact Theory.  

This area allowed the authors to develop an analytical solution.  The third major area was 

in the use of the finite element method and commercial, off the shelf program [ANSYS] 

to develop a solution.  The fourth, and possibly most important area of research, was the 

development of the solutions using non-dimensional methods which allowed their model 

to be independent size, scaling all numbers properly. 

The results of the FEM analysis agreed with the experimental results that were 

tabulated in previous literature.  They discovered that in the elastic regime, contact area 

was linearly proportional to the contact load at small loads, but at high loads, the 

behavior became nonlinear.  In the case of elastic-plastic contact, similar results were 

found.  The system was linear for small loads, and nonlinear for larger loads with a direct 

effect on strain hardening [6]. 

This research is on the cutting edge of current contact analysis research.  The 

fractal geometry matches nature closely, and can easily be scaled non-dimensionally.  Of 

note by Sahoo and Ghosh, is that their solution is highly dependent on an accurate 

development of the true surface profile.  Without knowing the specific details of the 

surface one is analyzing, the proper fractal surface can not be developed for accurate 

research.   

5. Ali and Sahoo 

The purpose of this research was to describe the adhesive contact between rough 

surfaces with small-scale surface asperities using an elastic-plastic model of contact 

deformation based on fictitious plastic asperity concept developed by other researchers, 

Abdo and Farhang [7].  The work began with a literature survey which discussed the 

work of Greenwood and Williamson and the downfalls of Hertz-contact assumptions. 
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The topic of adhesion contact and the Tabor number (the ratio of elastic 

deformation to the range of action of adhesion forces) was introduced.  The idea that the 

earlier analyses of adhesive contact treated everything on the macroscopic level as 

elastic-plastic, but at the microscopic level, the deformation of asperities was elastic then 

perfectly plastic.  The concept of elastic-plastic adhesive forces was developed using the 

plastic asperity concept.  Using a mathematical model, Ali and Sahoo were able to 

investigate three different asperity deformation conditions: purely elastic, elastic-plastic, 

and purely plastic.  The results were solved and presented in graphical format. 

This modern approach to solving the elastic-plastic adhesive contact between two 

forces is at the forefront of using the computational method to solving difficult problems.  

Significant research was accomplished to investigate the shortcomings of prior research 

in order to develop a program that would solve for the details of different cases of 

deformation.  Basically, where previous researchers assumed either plastic or elastic, Ali 

and Sahoo developed a program that could test the entire span of deformation. 

The results of the program were conclusive, and the prediction of load-separation 

behavior of contacting rough surfaces as functions of well-established elastic adhesion 

index and plasticity index.  Basically, the results took previously tabulated material 

properties, which gave them the ability to analyze elastic and plastic behavior on both the 

macroscopic (material) and the microscopic (asperities on the surface).  The 

representation of the data claimed to be a more-realistic model than all previous [8]. 

This research is the most current and up-to-date use of computing power to solve 

a problem that had previously been modeled.  By taking known data for elastic or plastic 

contact and solving for the grey area in between, the authors created a program that is the 

most accurate representation of the real world.  One suggestion that could be made for 

future work would be the inclusion of a graphical 3-D model in order to compare it to 

experimental deformation. 

6. Pratikakis 

The research of Nikolaos Pratikakis for his Master’s thesis was to develop a 

mathematical program to model the electromagnetic rail gun.  His research used the finite 
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element method to solve for the potential field, temperature field, stress field, electrical 

conductivity, and thermal conductivity between the rails and the armature.  His program 

used statistical data from experimentally gathered topographical data for typical rail and 

armature surfaces to model the contact interface.  Using known analytical formulae for 

the multi-physics situation that develops within the rail gun, he was able to use the finite 

element method to determine the characteristics of the rail and armature during the entire 

cycle of a firing [9]. 

The Pratikakis program is used in this thesis to determine the properties of the rail 

gun when the armature and projectile exit the rails.  His method was altered to account 

for fractal geometry at the interface between the rails and armature, but his finite element 

method solver was left as is.  Using Pratikakis’ method, the thesis research conducted 

herein could be expanded for the application to the electromagnetic rail gun. 

7. Polonsky and Keer 

The purpose of the research completed by Polonsky and Keer was to develop a 

faster way to solve rough contact problems.  Arguing that the Hertz theory uses the 

stress-displacement response of individual microcontacts and does not take into account 

the effects of neighboring contact points, they sought to develop a method that would 

accurately describe generalized contact. 

The method that Polonsky and Keer adopted was the multi-level multi-summation 

and conjugate gradient techniques.  They determined the real contact area using the 

conjugate gradient method.  Then, using a two-dimensional multi-level multi-summation 

algorithm, they were able to keep the summation error under the discretization error.  

Their method views the contact surface as a three-dimensional grid in contact with 

another surface that has the same number of nodes on its respective grid.  Assuming that  

the contact planes remain parallel to one another, their algorithm solves the three-

dimensional general grid and then simplifies that grid into a two-dimensional grid that 

only represents the contact regions.  Thus, their method is quick and accurate, taking into 

account the effects of regional contact points on one another [10]. 
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This method takes into account regional contact effects on one another, but does 

so using purely elastic theory.  It also models the contact as two dry surfaces in rough 

contact, which may or may not be the proper case in many lubricated mechanical devices.  

Further research and development would be helpful to develop a mathematical solver that 

takes into account lubrication, elastic-plastic deformation, and stress-strain relationships 

within the contact surface. 

8. Hu, Panagiotopoulos, Panagouli, Scherf, and Wriggers 

The objective of the research of Hu, Panagiotopoulos, Panagouli, Scherf, and 

Wriggers was to develop a program in which real contact areas could be found accurately 

using the finite element solution.  Additionally, they sought to minimize computational 

costs while retaining accuracy.  An adaptive finite element method was used to model 

fractal interfaces in a contact problem with the assumption of linear and finite elasticity.  

The focus on the research was in the problem description and the formulation of fractal 

interfaces.  Contact kinematics was based upon different penetration characteristics when 

two different bodies came into contact with one another.  This research concluded with 

the development and testing of the Finite Element Analysis Program (FEAP) using linear 

triangular elements [11]. 

The results and visual graphics of the developed program were similar to the 

commercial finite element program, ANSYS.  Future development and research are 

recommended to improve the current program and allow for multiple types of contact to 

include elastic-plastic and friction. 

C. OBJECTIVE 

The objective of this research is to develop a mathematical model to determine 

the contact stresses between nominally flat surfaces.  This situation is found in countless 

engineering applications, and is one of the prime factors in the development of the 

electromagnetic rail gun.  By using simple Hertz theory applied to the complex geometry 

of a fractal surface, the intention is to create a simple model which will allow designers to 

choose different surface topographies and material properties during the development of 

the rail gun.  The model developed will be an analytical model, strictly using 
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mathematics and computational analysis to determine contact stresses and area changes 

due to mechanical contact between two nominally flat surfaces.  The commercial 

program MATLAB 7.2 will be used to develop all computer code.  All assumptions will 

be clearly stated in appropriate sections. 
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II. FRACTAL SURFACES 

A. FRACTAL REPRESENTATION 

The concept of “fractal dimension” was introduced by the mathematician Felix 

Hausdorff in 1918.  This concept, distinct from the simple figures of Euclidean geometry 

was coined “fractal” by Benoit B. Mandelbrot of Poland.  Mandelbrot was the first to 

point out the feasibility of modeling natural, physical objects with the concept.  The 

property of self-similarity, which describes a system whose component parts represent 

the entirety of the system, make fractals an excellent choice for modeling surface 

topographies.  Fractals remain invariant under changes of scale.  The fractal concept has 

been adopted and used by mathematicians and engineers since 1975 [12].  The 

application of fractal geometry is applied hereafter to model physical topography with 

seemingly random features. 

B. CREATION OF BASELINE FRACTAL SURFACE 

The first step in modeling the fractal surface was to use the following fractal 

surface equation developed by Yan and Komvopoulos [5]: 
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To establish a baseline plot of the surface, MATLAB 7.2 was used with the 

following quantities substituted into the above equation: 
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MATLAB code was developed to solve for the magnitude of z  over a domain of 

one micrometer in the x  and y  directions, respectively.  These heights, obtained by the 

equation for ( ),z x y  above, were then plotted using the embedded MATLAB code surf.  

This code creates a mesh plot with the spaces between the lines, called patches, filled in 

according to a color scheme based on the z  data. 

In order to provide a cutaway view of the surface, the equation for ( ),z x y  was 

simply modified.  The value of y  was held constant, arbitrarily at 50 nanometers, to 

display the profile in the middle of the sample.  The values of z  were then displayed 

using the MATLAB code plot.  The results of these calculations are shown below as 

Figure 2.  This two-dimensional profile more clearly shows the distribution of peaks and 

valleys in the domain.  Of note is the randomness of the peak height distribution 

throughout the sample. 

MATLAB code was then developed to determine the location of the local peaks 

of the plotted surface.  A peak was defined as a specific point whose value for z  was 

larger than both the preceding and following value of z  in the x and y directions.  The 

height of the peak, or z  value, was then saved into a column vector for further 

calculations.  Using this column vector, the peak radius was then solved for at each 

location deemed a peak.  To solve for the peak radius, it was assumed that this radius was 

equal to the radius of curvature at the location of the peak.  This was solved by setting the 

radius of curvature equal to the reciprocal of the second derivative as shown below: 

 

       ( )
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2
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r
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∆
=

+ −
    (3) 

 

This equation was solved in both the x  and y  directions, and then averaged to 

find the overall peak radius at that location.  Although averaging in only the x and y 

directions may not be the most accurate assumption, it was used to simplify the 

calculations. 
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Figure 2.   Baseline Fractal Surface. 

 

In order to gain a better understanding of the effects each parameter has on the 

surface profiles, the values for each of the variables in the z equation were varied.  The 

following sections discuss the different parameters of the equation while displaying the 

results when each variable is increased and decreased from the baseline value.  Included 

in the MATLAB plot were the mean peak height and mean peak radius over the domain 

shown.  These values were calculated and displayed to assist in discerning between the 

different parameter changes. 

C. PARAMETRIC STUDY 

1. Variation of the Number of Superposed Fractal Ridges, M  

The parameter M  in the equation for z in terms of fractal notation represents the 

number of superposed fractal ridges.  This parameter, if set equal to one, would construct 

a cylindrical, corrugated, two-dimensional surface.  Thus, for values greater than one, the 
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parameter controls how many ridges are present in the surface.  Figure 3 displays the 

fractal surface and profile when M  is increased from the baseline value of 10 to 12.  The 

change of M  results in an increased total number of peaks over the domain, specifically 

from 1775 to 1835.  The mean peak height increased, from approximately 7697 to 8601 

nanometers.  Conversely, the mean peak radius is reduced from 0.59 to 0.18 nanometers.  

Thus, the peaks on average have increased height and decreased in radius, giving higher, 

narrower peaks. 

 
Figure 3.   Fractal Surface; Increased M . 

 

When the parameter M  was decreased from the baseline value of 10 to 8, the 

equation yielded a surface and profile as shown in Figure 4.  The decreased M  resulted 

again in an increased total number of peaks from 1775 to 1822.  The mean peak height 

decreased, from approximately 7697 to 6794.  Similarly, the mean peak radius decreased 

from 0.59 to 0.19 nanometers.  Thus the peaks on average have decreased height and 

decreased radius, giving lower, narrower peaks. 
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Although the three-dimensional surface profiles appear similar to the baseline, the 

two-dimensional profiles display the significant changes when the parameter M  is 

changed.  Increased values of M  tend to reduce the difference between the peaks and 

valleys of the figure, causing the frequency band to become narrower.  Surprisingly, a 

decreased value of M  also caused some narrowing of the frequency band.  The value of 

M was chosen as the baseline arbitrarily in order to generate a surface profile similar to 

one shown by Yan and Komvopoulos [5].  Because the equation was designed around the 

value of M  equal to 10, its results yield a profile with the best distribution throughout a 

large frequency band. 

 
Figure 4.   Fractal Surface; Decreased M . 

 

2. Variation of the Fractal Roughness, G  

The parameter G  in the equation for z in terms of fractal notation represents a 

height scaling parameter.  As it falls outside the summations and trigonometric functions 

in the equation, it is independent of frequency, and affects the results as a mere scale 

factor.  It is termed the fractal roughness by Yan and Komvopoulos [5].  Increasing the 
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fractal roughness from the baseline 111.36 10−×  to 101.8 10−×  meters simply shifts the 

surface and profile closer to the x - y  plane.  The overall number of peaks stays the same 

at 1775, but the mean peak height decreases from 7697 to 975 nanometers.  Conversely, 

because the peak height is changing, it has an effect on the way that the peak radius is 

calculated.  Thus, the mean peak radius increased from 0.59 to 4.69 nanometers, yielding 

shorter, wider peaks.  The results of the increased value for fractal roughness are shown 

in Figure 5. 

 
Figure 5.   Fractal Surface; Increased G . 

 

Decreasing the fractal roughness from the baseline 111.36 10−×  to 123.0 10−×  

meters simply shifts the surface and profile further away from the x - y  plane.  The 

overall number of peaks stays the same at 1775, but this time the mean peak height 

significantly increases from 7697 to 25791 nanometers.  In addition, due to the  
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significant change in peak height, the mean peak radius decreased from 0.59 to 0.17 

nanometers, yielding shorter, wider peaks.  The results of the decreased value for fractal 

roughness are shown in Figure 6. 

The parameter G , though it has an effect on the presentation of the surface 

profile, simply is just a scale factor.  It keeps the same peak location, but varies the height 

and radius at that specific location.  G  is termed the fractal roughness because as it is 

increased, it creates lower, smoother peaks.  The smoothness of the surface in this case, is 

the increased peak radius.  The larger the peak radius, the greater surface area at the top 

of the peak; and thus an overall smoother appearance. 

 
Figure 6.   Fractal Surface; Decreased G . 

 

3. Variation of the Fractal Dimension, D  

The parameter D  in the equation for z in terms of fractal notation represents the 

fractal dimension.  Increasing the fractal dimension from the baseline 1.20 to 1.25 
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slightly increases the number of peaks from 1775 to 1780.  The increased D  decreases 

the mean peak height, however, from 7697 to 5640 nanometers.  Conversely, it increases 

the mean peak radius from 0.59 to 0.87 nanometers.  As D  is increased, the topography 

is somewhat smoother, with a narrower frequency band and larger peak radii.  Figure 7 

shows the new profile with D  increased. 

When the fractal dimension is decreased from baseline 1.20 to 1.15, it has an 

opposite effect on the topography, yielding a much more jagged profile.  The decreased 

D  develops a mean peak height of 10510 nanometers, more than 2800 nanometers over 

the baseline.  In this case the peak radius decreases from 0.59 to 0.39 nanometers. 

 
Figure 7.   Fractal Surface; Increased D . 

 

The variation of the fractal dimension, D , is a simple way to change the overall 

surface smoothness.  By increasing D , the equation yields a smoother topography, with a 

narrower frequency band.  Decreasing D  has the opposite effect.  The variation in fractal 
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dimension has little effect on the actual surface profile shape.  The two dimensional 

profile remains nearly the same for the change in D .  Specifically, the shape differences 

between the profile of the increased and decreased D  values is negligible.  Scale aside, 

the profiles are exactly the same.  As shown in Figure 8, peak heights are in the same 

relative location and the overall number of peaks is roughly the same. 

 
Figure 8.   Fractal Surface; Decreased D  

 

4. Variation of the Density of the Profile Frequency, γ  

The parameter γ  in the equation for z in terms of fractal notation represents the 

density of the profile frequency.  Increasing the density of the profile frequency from the 

baseline 1.5 to 1.9 has no effect on the number of peaks which remains constant at 1775.  

The increased γ  very slightly decreases the mean peak height, however, from 7697 to 

7448 nanometers.  It decreases the mean peak radius from 0.59 to 0.23 nanometers.  As 

γ  is increased, the topography is somewhat smoother, with a narrower frequency band.  
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The peak height distribution is more consistent than in the baseline, meaning that many 

of the tall narrow peaks from the baseline have been replaced with shorter, narrower 

peaks when γ  is increased.  Figure 9 shows the new profile with γ  increased. 

 
Figure 9.   Fractal Surface; Increased γ . 

 

When the density of the profile frequency is decreased, it has a greater effect on 

the profile.  The number of peaks is decreased from 1775 to 1667.  Decreasing the 

density of the frequency, however, causes the mean peak height to increase from 7697 to 

8520 nanometers and decrease the mean peak radius from 0.59 to 0.16 nanometers.  

Thus, the profile is shifted further from the axis, while at the same time the frequency 

band is decreased when compared to baseline.  The surface, with increased profile 

frequency, is shown as Figure 10. 

Yan and Komvopoulos chose the value of γ  equal to 1.5 for their studies based 

upon prior research.  They claim that this is the best value for the equation due to 
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considerations of surface flatness and frequency distribution density [5].  When compared 

to the increased and decreased γ  values, the baseline profile shows the most randomness 

and variation throughout the profile. 

 

 
Figure 10.   Fractal Surface; Decreased γ . 
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III. CONTACT MODELING 

A. FORCE-DEFLECTION MODELING 

To properly understand the situation of contact, the problem was simplified so 

that simple Hertz theory could be applied.  In order to apply Hertz theory, some 

assumptions were made in the solutions of the contact problem: 

• The contacting bodies are isotropic and elastic. 

• The contact areas are essentially flat and small relative to the radii of 
curvature of the undeformed bodies in the vicinity of the interface 

• The contacting bodies are perfectly smooth, and therefore only normal 
pressures need to be taken into account [2]. 

Taking into account these assumptions, well-known analytical Hertz equations 

were used to model each surface peak as a perfect sphere in contact with a rigid flat plate.  

This assumption required the development of a computer program to solve for each of the 

thousands of peaks in an extremely small cross-sectional area. 

1. Hertz Equations 

The simplest form of the Hertz problem is one that describes two spherical 

surfaces in contact.  The contact area in this case is a perfect circle and is described as 

having a radius, a , as follows [2]: 

    ( )
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The maximum contact pressure, cσ , is described as: 

        21.5c
P
a

σ
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=     (5) 

Also described is the relative displacement, δ , of the centers of the two spheres 

due to local deformation and contact at the interface as shown below: 
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When the aforementioned equations are again simplified to represent a sphere in 

contact with a rigid flat plate, the following substitutions are made: 
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    (7) 

Thus, the equations are simplified as shown below: 
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For this analysis, however, the requirement to impose a deflection and measure 

the force required to cause that deflection was desired.  Therefore, the deflection equation 

above was solved for the force, P , giving: 

     ( )3 21 30.74P E rδ=     (9) 

Using the above equation for the radius, a , of the contact circle, the individual 

contact area for each sphere against a flat plate was solved as follows: 
21 3
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π π
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Using this equation and the MATLAB program, a force-deflection analysis was 

completed. 

2. MATLAB Program 

The simplicity of the Hertz theory allows the development of an analytical 

solution to be relatively straight forward.  Using a complex surface generated by the 

fractal equation described in the previous chapter, the program analyzes a specific area 

and identifies the peaks.  The peaks are searched for in both the x  and y  directions 

individually and are tabulated in a column vector based upon their respective coordinate 

value.  Each time a peak is found, a number is added to the counter, which displays the 

total number of peaks in a given sample area. 
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At each of these locations deemed a peak, the height is recorded as the value in 

the z direction of the standard Cartesian coordinate system.  A similar column vector is 

created to tabulate the local radius of curvature in the x  and y  directions respectively.  

These radii of curvature of each peak are averaged as a single radius of a sphere for 

simplicity.  In order to use Hertz theory in the simplified single sphere on a flat plate, the 

peaks are analyzed individually and treated as local spheres with radii equal to the 

respective radius of curvature.  

The force required to induce (or resist) a given deflection was the desired goal of 

the program.  To achieve this, the relative deflection needed to be solved at each of the 

peaks.  But, since the overall surface had multiple peaks with multiple heights and 

different radii, a loop needed to be created to separate rigid body motion from contact 

deflection. 

The separation between the fractal surface and the rigid flat plate was defined as 

the difference in height between each individual peak and the highest peak on the surface.  

To clarify, if a rigid flat plate was suspended above the surface with no contact, no force 

would be required.  This would be the case as the plate was lowered until it made contact 

with the highest peak.  From this point on, an opposition force would be generated as the 

plate was lowered and more and more peaks came in contact.  Thus, the highest peak was 

chosen as the reference for the separation data. 

To create a force-deflection plot over a span of increasing deflection, a loop was 

generated to step-increase the deflection from zero to an arbitrary maximum.  Simply 

stated, the program simulated the action of pushing a rigid flat plate onto the peaks of the 

fractal surface, all the while remaining parallel to the x - y  plane.  To account for the 

different peak heights, the separation was used to determine when a specific peak would 

come into contact with the rigid flat plane.  Some of the shorter peaks would never come 

into contact with the rigid plane, and thus were discounted.  The program included a 

counter to determine the number of effective peaks; the number of peaks that actually 

were affected by the contact with the rigid plane. 
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Based upon the separation, contact, and changing relative deflection, calculations 

were completed at each individual effective peak.  The opposition force at each peak was 

tabulated in a column vector and then summed to determine the overall effective force of 

opposition through the use of a loop.  The summation data was tabulated in a column 

vector based upon each step decrease of δ , so that the force-deflection data could be 

plotted  Additionally, using the equation for the contact area of each peak, the program 

determined the overall effective contact area for each step of δ .  Using the data from the 

force and area calculations, a local contact pressure was solved at each peak and 

tabulated in a column vector to calculate the overall opposition pressure as the deflection 

was changed. 

The program described above was then slightly modified to include an extra loop 

that allowed the user to change some of the parameters of the fractal equation and plot the 

changes.  This visual display of the different parametric changes helped to discover some 

direct relationships between surface profile shape and the changes in effective contact 

area and opposition force.  In all the following figures, the zero displacement starts from 

the highest peak of the fractal surface. 

3. Results, Deflection-Generated Opposition Pressure 

Using the aforementioned MATLAB program, plots of the deflection-generated 

opposition pressure were created to determine the effects of each individual parameter.  

The figures on the following pages show the results when different parameters are 

increased and decreased from the baseline.  

a. Variation of the Number of Superposed Fractal Ridges, M  

As previously discussed in the parametric study, the number of superposed 

fractal ridges, M , has a significance on the shape of the fractal surface.  An increase in 

M  caused an average increase in peak height, and a decrease in peak radius.  The 

expected effect on the deflection-generated opposition pressure matched the results as 

shown in Figure 11.  Increasing the number of superposed fractal ridges caused a 

significant increase in opposition pressure.  This increase is believed to have come from 
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an increased number of peaks, thus more peaks in contact.  More peaks in contact 

resulted in a greater pressure distribution.  Of note, however, is that along with the effect 

of the wider frequency band of the increased M , the larger deflections have a much 

greater effect on the contact pressure. 

 
Figure 11.   Pressure-Deflection Curves, Changing Parameter M . 

 

The taller peaks make contact first, but as the deflection is increased in 

steps, the pressure increases as more and more peaks become in contact.  The slope of the 

pressure-deflection curve is much steeper for the case of the increased M . 

Conversely, when M  is decreased, the effect on the fractal surface is one 

which decreases the frequency band, peak height, and peak radius.  The decreased width 

of the frequency band has the most significant effect.  Because many of the peaks are 

shorter and closer in height to the surrounding peaks, they all make contact at smaller 

deflections.  Instead of changing rapidly as in the case of the increased M , the slope of 
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the pressure deflection curve remains much flatter, with very small changes in slope 

along the length of the curve.  The effect of the decrease in M  is shown in Figure 11. 

b. Variation of the Fractal Roughness, G  

The fractal roughness, G , simply represents a height-scaling parameter, 

and thus the effect of an increase or decrease is directly correlated to the pressure-

deflection curve shown in Figure 12. 
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Figure 12.   Pressure-Deflection Curves, Changing Parameter G . 

 

The Increasing the fractal roughness shifts the pressure-deflection curve 

up.  The value for the peak radius is calculated based upon a change in peak height in a 

specific direction, and since an increase in G  causes the peaks to become shorter, the 

radius is directly affected.  When G  is increased, peak radius increases.  Wider, shorter 

peaks will have a greater contact area and thus greater pressure for the same force. 
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Conversely, a decrease in G  has the opposite effect.  Peak heights are 

significantly increased, but radius is significantly decreased.  The taller, narrower peaks 

make contact in the same manner as the shorter wider peaks, but the decreased radius 

causes a decrease in contact area.  Thus, the contact pressure is decreased, yielding a 

much flatter pressure-deflection curve as shown in Figure 12. 

c. Variation of the Fractal Dimension, D  

The fractal dimension, as previously discussed, changes the smoothness of 

the fractal surface.  An increase in D  develops a smoother topography with narrower 

frequency band.  In addition, the peak radii are increased, which causes more peak 

surface to be in contact.  The small changes of D  are shown in Figure 13.  Although the 

curves are slightly different, they all follow the same trend.  As previously discussed, the 

surface profile shape remains virtually the same for different values of D , the largest 

change being the peak height.  An increase in D  caused a decrease in peak height, and a 

decrease caused a significant increase in height.  Thus, the shorter peaks made contact 

over a larger area, causing a steeper pressure-deflection curve, whereas the taller peaks 

had the opposite effect. 
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Figure 13.   Pressure-Deflection Curves, Changing Parameter D . 

 

d. Variation of the Density of the Profile Frequency, γ  

The density of the profile frequency had different effects on the surface 

topography as was previously discussed.  Thus, the profile was inconsistent for different 

values of γ .  Predicting the shape of the profile based on the γ  value was inconclusive.  

Thus, the originators of the fractal surface equation, Yan and Komvopoulos, chose the 

value equal to the baseline of 1.5 based upon their prior research.  The pressure-

deflection curves are shown below in Figure 14, but direct correlation to the effects due 

to the parameter γ  was not possible. 



 31

 
Figure 14.   Pressure-Deflection Curves, Changing Parameter γ . 

 

4. Results, Deflection-Generated Contact Area Ratio 

a. Variation of the Number of Superposed Fractal Ridges, M  

The effect of the various values of M  was fairly simple to determine 

based upon the results of the parametric study previously conducted.  Increasing the 

number of superposed fractal ridges caused increased peak height and decreased radius.  

Although the initial peak radius had an effect on the contact area, the formulation of the 

equation to solve for the continued increase in contact radius after a peak made contact 

caused the actual area to increase significantly.  The effect was that the taller peaks, made 

contact early, and their small peak radii increased at a rate much greater than the baseline.  

The results are shown below in Figure 15. 
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Conversely, the decrease in M  caused the peaks to become shorter while 

at the same time having a decreased peak radius.  Thus, the peaks came into contact much 

sooner and the peak radii would all increase at the same time as the other peaks in 

contact.  Therefore, the percentage of area in contact did not significantly change over the 

range of deflections shown.  The results matched what was expected based upon the 

fractal surface shape and profile. 

 
Figure 15.   Area Ratio-Deflection Curves, Changing Parameter M . 

 

b. Variation of the Fractal Roughness, G  

Similar to the effects upon the pressure-deflection curves, the variation of 

G  had the exact same effect on the area-deflection curve shown below as Figure 16.  The 

decreased G  flattened the curve, whereas the increased G  caused a steep increase in the 

curve.  Again, the reason for this change in shape is due to the fact that the fractal  
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roughness simply is a height scaling parameter.  The radius was calculated based upon 

the change in height (or radius of curvature) at the peak, and thus the effect is directly 

correlated. 

 

 
Figure 16.   Area Ratio-Deflection Curves, Changing Parameter G . 

 

c. Variation of the Fractal Dimension, D  

An increase in D  developed a smoother topography with narrower 

frequency band.  The smoother the topography is, the more area is in contact.  When D  

is decreased, the topography becomes more jagged, and thus fewer peaks make contact.  

The decreased number of peaks in contact causes a decrease in contact area ratio.  The 

results of the variation of fractal dimension are shown below as Figure 17. 
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Figure 17.   Area Ratio-Deflection Curves, Changing Parameter D . 

 

d. Variation of the Density of the Profile Frequency, γ  

Varying the density of the profile frequency, as previously stated, was 

inconclusive as far as estimation of surface shape and profile was considered.  Thus, the 

effect on contact area ratio was also varied based upon the different profile frequencies.  

Again, the value of γ  equal to 1.2 was chosen by the originators of the equation based 

upon previous research in surface flatness and frequency distribution.  The results of the 

area-deflection plot are shown below as Figure 18. 
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Figure 18.   Area Ratio-Deflection Curves, Changing Parameter γ . 

 

5. Curve Fitting 

In order to properly analyze the results, it was desired to find suitable equations 

for the deflection-generated opposition pressure and the area-deflection curves, 

respectively.  Using MATLAB and its embedded code for polynomial curve-fitting, the 

pressure and area curves were solved using linear, quadratic, and cubic equations.  The 

results of each polynomial fitting were assembled and plotted along with the raw data to 

determine which equation best fit the data.  The goal was to determine an equation that 

was both simple and accurate, and thus research beyond the level of the cubic polynomial 

was not considered.  The results are shown below as Figure 19.  Although the quadratic 

equation does a reasonably good job of fitting the data, it was determined that the cubic 

remains closer to the data throughout the range of deflection.  These cubic equations were 

then used in the Railgun program discussed in the next chapter. 
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Figure 19.   Polynomial Curve-Fitting. 
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V. RAIL-GUN MODELING AND ANALYSIS 

A. INTRODUCTION 

The research completed for this thesis focused on the contact problem 

encountered during the development of the electromagnetic rail gun.  A study of the 

specific interface between the armature and the rails was necessary to properly 

understand the mechanics in this area.  The thesis research of Nikolaos Pratikakis in 2006 

focused on the development of a mathematical model of the electromagnetic rail gun.  

Using the equations developed in the previous chapter, the Pratikakis model was slightly 

modified to reflect the research of this thesis. 

B. PRATIKAKIS MODEL 

The mathematical model created by Nikolaos Pratikakis was developed using 

MATLAB code and the finite element method.  It was made up of two main parts which 

are briefly summarized below. 

1. Part I, Setup of Inertial Coordinate System and Geometric 
Configuration 

Part I of the program was the development of the specific geometric dimensions 

and mesh of the model based upon lengths and widths of the rails and projectile as 

provided by the manufacturer.  The geometry was simplified into a two-dimensional, 

uniform rectangular mesh for both the rails and the armature.  Of note, however, is that 

the geometry could be changed very simply to account for different shaped armatures [9]. 

2. Part II, Main Program and Description of Functions 

A schematic of the rail gun program is shown as Figure 20.  This program 

completes many calculations during each loop that properly account for the multi-physics 

nature of rail gun functioning.  Specifically, electrical current density and current 

distribution are used to determine the total heat generated due to electrical resistance.  

These values are also used to determine the Lorentz Force on the projectile.  Using partial 

differential equations, the program also completes a stress analysis to estimate the x  and 
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y  displacements.  Thermal stresses are also calculated by assuming that the rails are 

fixed and rigid.  The acceleration of the armature is also calculated using the second law 

of Newton.  The program continues to run in an iterative loop until the displacement of 

the projectile is larger than the length of the rails, at which it records an exit velocity [9]. 

 
Figure 20.   Schematic of Rail Gun Program [8]. 
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C. RESULTS OF MODIFIED PRATIKAKIS EQUATION 

In order to properly understand the effects of each of the fractal parameters in a 

real-world application, the Pratikakis rail gun program was used.  Using this program, a 

baseline set of results was generated using the nominal values previously discussed in 

this thesis.  Then, the following parameters were altered: number of superposed fractal 

ridges, fractal roughness, fractal dimension, and profile frequency. 

1. Variation of the Number of Superposed Fractal Ridges, M  

Using 10 as the baseline value of M , the parameter was decreased to the values 8 

and 9, and increased to the values 11 and 12.  Each time the parameter was changed, the 

Pratikakis rail gun program generated the values of the area ratio, electrical conductivity, 

maximum temperature, and velocity of the projectile at the time at which it exits the rails.  

These results were recorded for each of the four different variations of the parameter, M .  

In order to gain a better sense of the change, the results were all normalized against the 

baseline value for comparison.  The results of this parametric change are shown as Figure 

21 with one exception.  When the program was run with a value of M  equal to 9, it 

produced results which were a significant outlier.  When the normalized data was plotted, 

the 9M =  data resulted in a plot that was almost impossible to discern the other values 

of M , and thus this set of results was left out of the figure. 

When the number of superposed fractal ridges was decreased or increased, it 

caused the values for all four of the measured output quantities to increase.  As 

previously discussed, the decrease in M  results in shorter, narrower peaks, whereas the 

increase in M  results in taller, narrower peaks.  The effect of the narrowing of peak 

radius may result in a greater contact area, which allows for improved electrical 

conductivity.  The greater the electrical conductivity, the more efficient Lorentz force, 

which results in a greater exit velocity and higher temperature.  Of note in Figure 21 is 

that all four plots display the same trend on different scales.  This is believed to be a trend 

strongly influenced by the effective area ratio. 
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Figure 21.   Variation of the Number of Superposed Fractal Ridges, M . 

 

2. Variation of the Fractal Roughness, G  

Using 13.6 picometers ( 111.36 10−× m) as the baseline value of G , the parameter 

was decreased to the values 110.30 10−×  and 110.70 10−× , and increased to the values 
111.50 10−×  and 101.80 10−×  meters.  Each time the parameter was changed, the Pratikakis 

rail gun program generated the values of the area ratio, electrical conductivity, maximum 

temperature, and velocity of the projectile at the time at which it exits the rails.  These 

results were recorded for each of the four different variations of the parameter, G .  In 

order to gain a better sense of the change, the results were all normalized against the 

baseline value for comparison.  The results of this parametric change are shown in Figure 

22. 
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Figure 22.   Variation of the Fractal Roughness, G . 

 

When the fractal roughness was decreased the area ratio, electrical conductivity, 

and temperature all decreased, but the exit velocity increased slightly at 110.70 10G −= ×  

and decreased at 110.30 10G −= × .  As previously discussed, when the parameter G  is 

decreased, the surface peaks become slightly shorter and wider, but the number of peaks 

remains the same.  The wider peak radii decrease the deflection that occurs at the contact 

surface, and thus decreases the change in contact area.  This, in turn, decreases the 

conductivity, temperature, and exit velocity.  An exception occurs at the value of 
110.70 10G −= ×  meters, where the exit velocity increases when compared to baseline 

when all of the other parameters have decreased. 
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When the fractal roughness was increased, the area ratio, electrical conductivity, 

temperature, and exit velocity all increased.  When G  is increased, the result is taller, 

narrower peaks.  Again, the effect of decreased peak radius is that the area ratio may 

change easily as an force is applied.  The increased area ratio thus dominates the rest of 

the results, and yields an increase in electrical conductivity, temperature, and exit 

velocity.  Of note, is when G  is significantly increased as is the case when 
101.80 10G −= ×  meters, resulting area ratio increase is immense, and has a direct effect 

on the other quantities calculated. 

3. Variation of the Fractal Dimension, D  

Using 1.20 as the baseline value of D , the parameter was decreased to the values 

1.15 and 1.175, and increased to the values 1.225 and 1.25.  Each time the parameter was 

changed, the Pratikakis rail gun program generated the values of the area ratio, electrical 

conductivity, maximum temperature, and velocity of the projectile at the time at which it 

exits the rails.  These results were recorded for each of the four different variations of the 

parameter, D .  In order to gain a better sense of the change, the results were all 

normalized against the baseline value for comparison.  The results of this parametric 

change are shown as Figure 23. 

As was previously discussed, the fractal dimension is the simplest way to change 

the overall surface smoothness.  Increasing D  yields a smoother topography with a 

narrower frequency band.  The relative shape of the profile remains unchanged, such that 

peaks remain in the same location, but their heights and radii may change.  Thus, one can 

expect different results when the frequency band is narrowed.  Because the fractal 

dimension predominantly effects peak height, and in turn, frequency band, the results of 

the Pratikakis program are difficult to determine based on this parameter alone. 

In the case of 1.15D =  and 1.25D =  all results decrease compared to the 

baseline, whereas in the other two cases tested, the results increase.  The conclusions 

gathered from this result is that the peak height and frequency band may have 

counteractive effects on the contact area.  In some instances, the peak height may cause 

fewer peaks to be in contact, but be easily deformable, and in other cases such as a slight 
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increase, their may be more peaks in contact, but be more difficult to deform.  Thus, one 

must examine the size of the frequency band and the actual profile before trying to 

determine the direct effects of the variation of the fractal dimension, D . 

 
Figure 23.   Variation of the Fractal Dimension, D . 

 

4. Variation of the Density of the Profile Frequency, γ  

Using 1.5 as the baseline value of γ , the parameter was decreased to the values 

1.3 and 1.4, and increased to the values 1.7 and 1.9.  Each time the parameter was 

changed, the Pratikakis rail gun program generated the values of the area ratio, electrical 

conductivity, maximum temperature, and velocity of the projectile at the time at which it 

exits the rails.  These results were recorded for each of the four different variations of the  
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parameter, γ .  In order to gain a better sense of the change, the results were all 

normalized against the baseline value for comparison.  The results of this parametric 

change are shown in Figure 24. 
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Figure 24.   Variation of the Density of the Profile Frequency, γ . 

 

The density of the profile frequency is a fractal parameter that has inconsistent 

results when the parameter is increased and decreased.  In some instances, a decrease in 

γ  results in a smoother, narrower frequency band, whereas in others, it yields a more 

jagged, wider frequency band.  Increasing the profile frequency density has similar 

effects.  Nonetheless, for the specific values of γ  tested, the baseline profile had the most 
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randomness and variation throughout the profile and was chosen by Yan and 

Komvopoulos to be 1.5 for the best random fractal profile. 

Of note in Figure 24 is that the shape of the curve for area ratio and electrical 

conductivity follow similar trends.  Although a different shape than the area ratio and 

electrical conductivity curve, the temperature and exit velocity curves follow a similar 

trend as well.  The unpredictable nature of the parameter γ  has a direct effect on the 

similarly unpredictable results of the Pratikakis equation. 
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VI. SUMMARY AND CONCLUSIONS 

In this thesis, a computer program was developed to model nominally flat contact 

surfaces throughout the mechanism of contact.  The use of analytical methods and Hertz 

contact theory allowed the program to solve for results analytically.  Ultimately, a 

seemingly random profile is reduced to a finite number of Hertz contact problems that 

can be solved independently.  By understanding each parameter of the fractal surface 

generator, one can tailor the surface to any known surface profile.  Because many 

surfaces found in nature reveal surface profiles similar to fractal geometry, the 

application of this program has limitless potential. 

A parametric study was conducted in order to further understand the fractal 

surface equation.  A baseline was chosen based upon previous work by Yan and 

Komvopoulos, and the following parameters were varied:  the number of superposed 

fractal ridges, fractal roughness, fractal dimension, and density of the profile frequency.  

The effects of changing each individual parameter were compared to the baseline and 

plotted. 

The number of superposed fractal ridges had an effect on peak height, peak 

radius, and frequency band changes.  Variation of the fractal roughness was determined 

to be a scale factor.  The fractal dimension parameter had the greatest effect on peak 

height changes.  The density of the profile frequency had inconclusive results. 

Use of a preexisting electromagnetic rail gun program allowed application of the 

nominally flat contact surface results.  The Pratikakis program clearly displayed the 

effects of surface profile upon performance of the electromagnetic rail gun.  Each 

parameter was studied to determine its effects upon not only the surface, but the 

application to a real world problem.  The parameters that were changed when analyzing 

the effect on profile shape were changed in the same manner when running the rail gun 

program, specifically increasing and decreasing the parameter from the baseline.  The 

effect of each parameter had a direct effect on surface shape, which in turn changed the 

results of the rail gun program. 
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VII. RECOMMENDATIONS 

This research provides a method to model contact surfaces using a fractal 

equation.  It simplifies the complicated problem of seemingly random contact down into 

a simple Hertz analysis.  Although the problem is calculated on the three-dimensional 

level, it may be inaccurate in the fact that each contact peak is modeled independently.  

The effect that one peak has upon another may cause significant changes in the fractal 

surface and the way in which it reacts.  Future studies using the finite element method 

would provide more accurate results.  Also, a thorough validation of the model against 

any experimental test data would be beneficial to refine the program. 
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